Spatially resolved electronic and vibronic properties of single diamondoid molecules.

نویسندگان

  • Yayu Wang
  • Emmanouil Kioupakis
  • Xinghua Lu
  • Daniel Wegner
  • Ryan Yamachika
  • Jeremy E Dahl
  • Robert M K Carlson
  • Steven G Louie
  • Michael F Crommie
چکیده

Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic bandgaps, optical properties, thermal transport and mechanical strength at the nanoscale. The recently discovered higher diamondoids have thus generated much excitement in regards to their potential versatility as nanoscale devices. Despite this excitement, however, very little is known about the properties of isolated diamondoids on metal surfaces, a very relevant system for molecular electronics. For example, it is unclear how the microscopic characteristics of molecular orbitals and local electron-vibrational coupling affect electron conduction, emission and energy transfer in the diamondoids. Here, we report the first single-molecule study of tetramantane diamondoids on Au(111) using scanning tunnelling microscopy and spectroscopy. We find that the diamondoid electronic structure and electron-vibrational coupling exhibit unique and unexpected spatial correlations characterized by pronounced nodal structure across the molecular surfaces. Ab initio pseudopotential density functional calculations reveal that much of the observed electronic and vibronic properties of diamondoids are determined by surface hydrogen terminations, a feature having important implications for designing future diamondoid-based molecular devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids

The unimolecular rectifier is a fundamental building block of molecular electronics. Rectification in single molecules can arise from electron transfer between molecular orbitals displaying asymmetric spatial charge distributions, akin to p-n junction diodes in semiconductors. Here we report a novel all-hydrocarbon molecular rectifier consisting of a diamantane-C60 conjugate. By linking both sp...

متن کامل

Symmetry dependence of vibration-assisted tunneling.

We present spatially resolved vibronic spectroscopy of individual pentacene molecules in a double-barrier tunneling junction. It is observed that even for this effective single-level system the energy dissipation associated with electron attachment varies spatially by more than a factor of 2. This is in contrast to the usual treatment of electron-vibron coupling in the Franck-Condon picture. Ou...

متن کامل

Study of strong R–P and spin–orbit vibronic coupling effects in linear triatomic molecules

The vibronic coupling between P and R electronic states of a linear molecule is considered with the inclusion of the spin–orbit coupling of the P electronic state, employing the microscopic (Breit–Pauli) spin–orbit coupling operator in the single-electron approximation. The 6 · 6 Hamiltonian matrix in a diabatic spin-electronic basis is derived by an expansion of the molecular Hamiltonian in po...

متن کامل

Vibronic coupling in benzene cation and anion: vibronic coupling and frontier electron density in Jahn-Teller molecules.

Vibronic coupling constants of Jahn-Teller molecules, benzene radical cation and anion, are computed as matrix elements of the electronic part of the vibronic coupling operator using the electronic wave functions calculated by generalized restricted Hartree-Fock and state-averaged complete active space self-consistent-field methods. The calculated vibronic coupling constants for benzene cation ...

متن کامل

Quantum Conductance and Electronic Properties of Lower Diamondoid Molecules and Derivatives

Diamondoids and their derivatives have found major applications as templates and as molecular building blocks in nanotechnology. An ab initio method we calculated the quantum conductance and the essential electronic properties of two lower diamondoids (adamantane and diamantane) and three of their important derivatives (amantadine, memantine and rimantadine). We also studies two artificial mole...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2008